- 理论支撑:企业财务大数据[2022-06-16]
- 数据治理的时代演变之道[2022-06-15]
- 数据治理的经济分析[2022-06-14]
- 实施数据治理时常犯的10[2022-06-13]
- 数据质量管理办法[2022-06-10]
- 治数VS养数[2022-06-09]
- 华为是怎么做数据治理的[2022-06-09]
- 数据发现对数据治理的重[2022-06-08]
- 工业企业数据治理的八大[2022-06-07]
- 企业数据治理团队的十大[2022-06-06]
敏捷BI比传统BI功能强大是否属实?
关于大数据的资讯铺天盖地而来,让人看得眼花缭乱。虽然资讯很精彩,我们也看到了大数据背后的价值,很多企业选择了商业智能BI产品。商业智能在使用上可分为敏捷BI与传统BI,从名字来看敏捷BI要比传统BI显得利索强大,事实是否如此呢?
我们来探究一下传统BI与敏捷BI的数据分析模式。
传统BI
在对大数据进行分析的过程中,传统BI的做法是,IT人员事先根据分析需求来进行建模(以及做二次表或打Cube),提前汇总好数据,业务人员在前端查看分析结果报表。
这种做法很成熟,持续了很多年,但是也存在着一些问题。
1.业务人员查看的报表相对静态,分析的维度和度量的计算方式已在建模时预先设定好, 不能更改,比如定好了是求和或求平均数,想改成求方差必须回去修改模型。
2.分析需求变更时,业务人员不能直接调整报表,需要IT人员重新建模或修改已有分析模型,耗时较长,响应速度较久。
造成这些的问题的本质原因是,过去的技术架构针对海量数据的计算能力不足,需通过建模、二次表、Cube提前进行数据运算汇总。
敏捷BI
随着技术的发展和演进,BI领域已经迎来了新一代敏捷BI的革新。以BI工具代表FineBI为例:
基于大数据的处理技术,其对TB-PB级的数据可实现秒级响应。敏捷BI的数据展现是起点,而不是终点。看到了数据,能交互式分析,能深入向下挖掘,能发现问题找到答案。
敏捷BI的分析报告能让非IT部门的同事直接在分析平台上做出来。不能把所有的分析报告需求都提交到IT部门,这样会严重增加IT部门的工作负担。敏捷BI的实施和操作相比传统BI都要来得更为简单,可以说是以业务人员为使用对象的BI。
分析报告需求经常需要数据层的改动,需要IT部门去改进数据层和业务层,传统BI平台需要一两个月去梳理模型。敏捷BI无需事先建模,可在分析过程中灵活调整分析维度和报表展现,需求变更可以在一天之内响应,提升企业的洞察力决策力。
与传统BI的重量建模、统一视图不同,敏捷BI采取轻量建模、N个视图的方法,数据连进来直接可以进行分析,并且业务人员可以实时调整分析的维度和度量的计算方式,极大增加灵活性,真正做到和数据对话。
想必大家会有一个疑问,既然有这么便捷的方式,为何传统BI不采用这种架构呢?正如上文所说,传统的技术架构没有引入现在的大数据技术,面对海量数据无法在用户点击的几秒内就展现结果,因此必须通过建模提前把数据汇总好,才能保证分析报表展现时的速度。实现敏捷BI的大前提是采用新架构处理数据的性能有了几十倍提升,涉及的技术包括分布式计算、内存计算、列存储、库内计算等。
因此,敏捷BI可以通过更低的成本、更短的上线周期,快速让企业洞察到数据的含义和价值。所以,敏捷BI相比于传统BI功能强大在某些方面确实属实。中翰软件专注数据治理11年http://www.jobhand.cn/。