- BI和报表到底有什么区别?[2022-07-25]
- 数字化转型五步法[2022-07-22]
- 详解客商主数据的输入及相[2022-07-21]
- 人人都在强调数据安全而不[2022-07-18]
- 报表到底应该归谁管,OLAP or[2022-07-15]
- 数据指标 VS 标签体系,到底[2022-07-13]
- 为什么是API而不是文件,对于[2022-07-12]
- 聊聊数据治理验证这件事[2022-07-11]
- 企业数字化转型中的数据思[2022-07-06]
- 如何精准识别主数据?[2022-07-05]
BI和报表到底有什么区别?
在很多人入门时,必然会听到的两个词就是“报表工具”和“BI商业智能”。然而很多人并不明白两者的概念和区别,以为报表就是BI,BI就是报表。
其实这是相当错误的理解,造成这种错误观念的原因主要是两者都是大数据时代下的分析工具,两者的功能有所重合,想要搞清楚两者之间的区别,就要从报表工具和BI商业智能工具的应用场景上分析。
一、BI商业智能与报表软件有什么区别?
报表是数据展示工具,商业智能BI是数据分析工具。
报表工具顾名思义就是制作各类数据报表、图形报表的工具,甚至还可以制作电子发票联、流程单、收据等等。
商业智能不单单是一个工具,更应该是一种解决方案。百度百科给出的解释是:商业智能是提取企业各个运作系统的数据,然后进行清理、抽取、转换和装载,即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、OLAP工具等对其进行分析和处理,最后将结果呈现给管理者,为管理者的决策过程提供支持。
两者最明显的区别,报表主要是IT开发人员制作并且服务于业务流程,比如销售报表、供应链生产报表。而BI商业智能也能做报表,但BI的报表形式更简单,操作起来自然更方便,报表的字段大多拖拖拽拽到维度框指标框中,形成报表,使用者有IT人员也可以是业务分析者。
一般来说,BI与报表有以下4个方面的区别:
1)任意分析维度
假设老板需要对一份有20个维度的销售明细数据进行任意维度的查看。维度有省、市、区、经度、纬度等区域字段,以及商品编号、商品名称、商品类型等商品属性字段等。
报表可以实现多维度数据展示,却无法支持任意维度任意组合。有N个维度,制作N张报表的形式虽然可以勉强支持,但工作量直接翻了N倍;就算不考虑后期运维成本,如果每张报表再考虑配置数据权限,是N*N指数级工作量的增长。
2)任意分析路径
分析路径,不仅仅指代通过钻取改变分析的颗粒度。除此之外,数据分析需要对多维形式组织起来的数据进行联动、钻取、维度切换等各种分析操作,以便剖析数据。毕竟,领导们看数的需求是无法预先设置的,真正的“任意分析”是满足老板随心所欲想要什么就有什么的看数需求。
且不说报表配置参数有多曲折繁琐,这一切,都不是靠报表系统配置一些常规的分析路径就能够满足的。
3)实时分析
如何实时掌握今年双十一的销量情况?
如何自定义业务核心指标并保持实时更新,让管理部门迅速发现问题?
如何实现异常数据自动预警,以便企业及时调整规划?
如何统计公司内部任务安排情况(例如研发开发排期),协助领导进行人员等资源调配?
首先,单纯的报表系统实现不了“实时数据”的支持,再者,实时数据≠实时分析,企业更渴望的是“实时分析”。实现准实时、分钟级实时数据的更新,同时支持复杂计算与分析才是老板的刚需。
4)报表系统无法实现的地方
报表系统可以连接多维数据库,但无法实现拖拽分析和自助分析;报表系统一般接入在某个业务系统数据库上提供查询功能,也可以实现跨库关联查询,但实现的复杂度和性能依赖报表工具的能力,除了数据展现以外,数据挖掘、性能优化、权限管控上都无法支持。
由此可见,报表,只是数据的一种展现工具,是静态的、固化的。所谓报表工具,例如国外的水晶报表,这类产品的本质是统计和展现数据,并提供基础的分析功能(排序、总计、方差等),报表目的是帮助用户掌握和了解数据,让使用者通过观察企业数据,知道当下发生了什么事情,着重于短期的运作支持。
而BI的重点在于商业数据的分析,它是立体多方面的,集成了数据统计、数据展示、数据分析和挖掘、数据预警等一系列整体的解决方案。在企业经营的过程中,决策者不仅仅需要知道发生了什么,还要知道为什么发生,以及通过已知去推断未来可能会发生什么。
总结一下,BI侧重于数据分析,是业务、数据、数据价值应用的过程,是一整套完整的解决方案。报表侧重数据展现,报表只是BI中的一个组成模块,报表无法替代BI。
以国产主流的FineReport和FineBI举例,前者是报表平台工具,后者是商业智能BI。
二、报表平台工具
FineReport的应用场景主要是业务报表制作,比如一些企业固定的月报,季报和关键数据指标的统计、展示和分析,在快速响应业务需求的同时解放自身劳动力。主要功能分为三大类:数据展示(报表)、数据查询(参数)和数据录入(填报),还有报表管理。
数据展示报表可分为表格类和图表类:
表格类
图表类
三、商业智能BI
商业智能工具侧重于数据分析,所以在报表制作难度上大大降低,但换来的代价是,不能制作复杂的报表。不同于传统做表的方式,他的目的在于将大数据量的数据快速的进行模型构建,进行展示,制成Dashboard。相比报表,侧重点在于分析,优势在于操作简单、数据处理量大,分析快速。
以FineBI为例,它是一个能快速搭建各种业务模型的自助式分析平台,企业级商业分析工具,常用于各种业务的数据分析。图表美观、上手简单,搭建模型也不需要很专业的数据挖掘技能。可以帮助业务人员用系统化的方法来规划、执行、测量和优化一个完整的、高度个性化的客户需求管理计划。
功能上BI有简单报表(汇总表和明细表)、Dashboard和数据分析功能。
1、简单报表
2、Dashboard
BI的可视化图表更侧重分析作用,主要是通过数据可视化更直观地发现业务运营过程中存在的问题,以更好地帮助业务人员调整工作策略。
3、数据分析
数据分析功能是BI工具的重中之重。目前市面上很多BI软件采取的都是OLAP分析模式。OLAP也被称为多维分析,它的目标是满足决策支持或者满足在多维环境下特定的查询和报表需求,其技术核心是“维”这个概念,“维”一般包含着层次关系。具体来说就是OLAP能够对数据采取切片、切块、钻取、旋转等各种分析动作,以求剖析数据,让使用者能从多个角度、多侧面地观察数据库中的数据,从而深入理解包含在数据中的信息。
四、BI商业智能与报表软件的其他区别
1、从面向群体来讲,报表主要面向IT开发者,或者某些企业专门设置的报表开发人员。因为需要一定的数据库知识和少量的JS;商业智能主要面向业务人员、数据分析人员,让他们不用给IT提需求,可以自给自足。操作简单,侧重分析。两者最后的报表和数据分析结果都是给领导、管理层看的,他们通过分析结果来制定决策。
2、从背后的技术架构来讲。商业智能可以处理更大的数据量,常常基于企业搭建的数据平台,连接数据仓库进行分析,但有些报表工具也可以完成这一部分工作。
3、最后的最后,两者的关系可交叉可递进,关键还是取决于企业需求,业务需求,也并不能绝对的判断好坏,各有优势,各有适用环境。
举例来说,如果领导用报表查看数据,那么领导可以知道当月总销售额、各个销售员的业绩、哪个产品卖得最好等等,主要是通过统计已知数据,了解总体和细节上的事实。
如果领导用BI查看数据,领导不光知道销售额、销售员业绩,还可以基于这个报表进行更自由的探索分析,比如分地区、分产品分门店查看,比如使用不同的图表(折线图、饼图、柱状图等)来获取不同视角下的结论,甚至还能对未来做出预测,比如产品A销量可观,预计10号之后库存枯竭,请及时备货等等。所以BI提供了是更深度的分析和更智能的决策辅助,这是和报表核心区别。
目前国内开展信息化工作的企业中,绝大部分还是使用的报表软件,主要用以解决企业内数据统计和展示的需求。而BI软件应用情况则相对小众,集中在信息化水平较高的行业中,比如银行、零售企业、电商、互联网公司这些。而国外企业因为信息化走的比我们超前,对于BI的应用已然很普遍了,同时国外的信息化软件也都趋向bi化和智能化。
五、BI的价值体现在哪里?
现在企业都在谈增长,BI对于企业的意义不是能给企业带来多少增长,而是能够给企业创造比别人更多更快的增长机会。
来看一个连锁零售行业的例子。门店盈利是连锁门店店长关注的重点,但很多企业对此的处理,只是计算一下各个门店的利润值,这样的数据统计称不上BI分析。
当得知最近一周单某店铺盈利下降/上升时,对利润指标背后的隐藏信息进行发现和提炼,进行横向和纵向的比较,利用BI去层层定位到波动原因。
单店盈利是由“毛利润”和“成本”构成,“毛利润”拆解后的衍生指标有“流量”和“客单价”等。假设成本不变的前提下,去分析门店盈利下降的原因,结合上图的指标拆解,可以细化定位到主要是“流量”锐减所导致的。此时,再结合实地考察可知,近期马路对面开了一家同类型的店铺导致了自然客流分散。
找到企业经营上的问题,并针对性的提出解决方案,以及逐一梳理影响指标的最小因子,发现新的盈利增长机会,才能说明这项指标的BI应用是完整的。
从行业来看,任何一个行业都需要精耕细作,例如,如何做到单店、单品、单客户的全息画像?如何针对每一次促销活动进行效果分析和评估?如何从成百上千、成千上万个SKU中定位到本季度、CBD类型的门店内最热销的关联商品搭配?
面对激烈的市场竞争,企业更需要有快速反应的能力。假设当下午3点某主力SKU时效类商品销售不及预期,如何第一时间触发预警、产生行动建议,并在可能错失第二波客流高峰之前,快速层层上报,拉动及时干预?当新品退出的时候,如何做到“快反”,通过局部的实时趋势结合历史的规律,探测新品的销售曲线,以最快的速度响应市场的节奏?
数据分析的高级玩家,已经开始尝试预测决策:预测是任何一项决策的最重要入口。波士顿咨询BCG最新的报告显示,对于零售和消费品行业,销售预测的准确度提升,可以为企业带来2.5%的潜在增长。如何基于历史经营数据与外部公共数据,预测未来1-7天不同细分品类、乃至SKU的销售额,进而进一步指导订货、促销、生产、物流?
这些就是BI能够带给企业的价值。让每一次决定、每一个管理细节、每一层战略规划都有数据支撑。
六、 企业如何选择适合自己的BI?
至此,相信大家已经了解到BI是数据化建设的趋势。
不同的行业,不同的企业,其BI需求是不同的。企业首先明确自己的业务类型、企业规模、目前的经营状况。对于数据知识发现的方法和手段多种多样,前提是要对业务本身有深刻理解,同时清楚地知道BI的终极目标,然后再考虑BI的可扩展性、售后服务以及迭代更新模式等。
以下几点是笔者总结的BI选型关注的要点,供大家参考:
1)轻量型:很多BI平台重在开发,对研发资源的要求高且对接慢,后期维护繁琐。如果企业没有相应的资源支持,建议选择轻量的平台,能够快速上手,维护成本低。
2)方便易懂:数据分析的结果最终是要赋能业务端,但是业务端用户尚缺乏专业的数据分析能力,建议对BI的选择要考虑产品的易用性和学习成本。
3)创新灵活:我们很难预估未来数据分析需要什么样的程度,所以在选择之前一定要足够考虑BI平台的创新能力,例如是否有异常检测、智能诊断、AI预测引擎、算法扩展等功能模块。
中翰软件:专注数据治理17年(http://www.jobhand.cn)
免责声明:本网站所发布的文章为本网站原创,或者是在网络搜索到的优秀文章进行的编辑整理,文章版权归原作者所有,仅供读者朋友们学习、参考。对于分享的非原创文章,有些因为无法找到真正来源,如果标错来源或者对于文章中所使用的图片、连接等所包含但不限于软件、资料等,如有侵权,请直接致电联系,说明具体的文章,后台会尽快删除。给您带来的不便,深表歉意。